A.P. STATE COUNCIL OF HIGHER EDUCATION

Semester-wise Revised Syllabus under CBCS, 2020-21

Course Code:

Four-year B.Sc. (Hons)
Domain Subject: **PHYSICS**IV Year B. Sc.(Hons) – Semester – V

Max Marks: 100+50

Course 6C: APPLICATIONS OF ELECTRICITY & ELECTRONICS

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes: Students after successful completion of the course will be able to:

- Identify various components present in Electricity& Electronics Laboratory.
- Acquire a critical knowledge of each component and its utility (like resistors, capacitors, inductors, power sources etc.).
- Demonstrate skills of constructing simple electronic circuits consisting of basic circuit elements.
- 4. Understand the need & Functionality of various DC & AC Power sources.
- Comprehend the design, applications and practices of various electrical & Electronic devices and also their trouble shooting.

II. Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

Unit-I INTRODUCTION TO PASSIVE ELEMENTS (10 hrs.)

Passive and Active elements-Examples, **Resistor**-Types of Resistors, Color coding - Applications of a Resistor as a heating element in heaters and as a fuse element. **Capacitor**-Types of Capacitors, Color coding, Energy stored in a capacitor, Applications of Capacitor in power supplies, motors(Fans) etc., **Inductor**-Types of Inductors, EMF induced in an Inductor, Applications of Inductor, Application of choke in a fan and in a radio tuning circuit, Series resonance circuit as a Radio tuning circuit.

Unit-II Power Sources (Batteries) (10 hrs.)

Types of power sources-DC & AC sources, Different types of batteries, Rechargeable batteries –Lead acid batteries, Ni-MH batteries, Li-ion batteries- Li-PO batteries, Series, Parallel& Series-Parallel configuration of batteries, Constant Voltage source-Constant Current Source-Applications of Current sources & Voltage sources, SMPS used in computers.

Unit-III Alternating Currents (10 hrs)

A.C Power source-Generator, Construction and its working principle, Transformers-Construction and its working principle, Types of Transformers-Step-down and Step-up Transformers, Relation between primary turns and secondary turns of the transformer with emf., Use of a Transformer in a regulated Power supplies, Single phase motor –working principle, Applications of motors(like water pump, fan etc.).

Unit-IV Power Supplies (Skill Based) (10 hrs.)

Working of a DC regulated power supply, Construction of a 5 volts regulated power supply, Design of a step-down (ex: 220-12V) and step-up (ex: 120-240V) transformers-Simple Design of FM Radio circuit using LCR series resonance (tuning) circuit, Checking the output voltage of a battery eliminator using a MultiMate.(Trouble shooting), Design of a simple 5 volts DC charger, Power supply for computers(SMPS)

Unit-V Applications of Electromagnetic Induction (10 hrs.)

DC motor -Construction and operating principle, Calculation of power, voltage and current in a DC motor, Design of a simple Motor (for example Fan) with suitable turns of coil-DC generator-Construction, operating principle and EMF equation, Construction of a simple DC generator, Difference between DC and AC generators

III. References:

- 1. Grob's Basic Electronics by Mitchel Schultz, TMH or McGraw Hill
- Electronic and Electrical Servicing by Ian Robertson Sinclair, John Dunton, Elsevier Publications
- 3. Troubleshooting Electronic Equipment by R.S.Khandapur, TMH
- 4. Web sources suggested by the teacher concerned and the college librarian including reading material.

Course 6C: Applications of Electricity & Electronics-

PRACTICAL SYLLABUS (30 hrs, Max Marks:50)

- IV. Learning Outcomes: On successful completion of this practical course, student shall be able to:
- 1. List out, identify and handle various equipment in Electrical & Electronics laboratory.
- 2. Learn the procedures of designing simple electrical circuits.
- 3. Demonstrate skills on the utility of different electrical components and devices.
- Acquire the skills regarding the operation, maintenance and troubleshooting of various Devices in the lab.
- Understand the different applications of Electromagnetic induction.
- V. Practical (Laboratory) Syllabus: (30 hrs, Max marks:50)
- 1. Acquainting with the soldering techniques
- 2. Design and Construction of a 5 Volts DC unregulated power supply
- 3. Construction of a Step down Transformer and measurement of its output voltage. And to compare it with the calculated value.
- Connect two or three resistors or capacitors or inductors and measure the Series, Parallel Combination values using a Multimeter and compare the values with the Calculated values.
- 5. Use the Digital Multimeter and Analog Multimeter to measure the output voltage of an AC &DC power supply and also the voltage and frequency of a AC signal using CRO.
- Use the Multimeter to check the functionality of a Diode and Transistor. Also test whether the given transistor is PNP or NPN.
- Construct a series electric circuit with R, L and C having an AC source and study the frequency response of this circuit. Find the Resonance Frequency.
- Construct a Parallel electric circuit with R, L & C having an AC source and study the frequency response of this circuit .Find the resonant frequency.
- Test whether a circuit is a Open circuit or Short Circuit by measuring continuity with a Multimeter and record your readings.

VI. Lab References:

- Laboratory Manual for Introductory Electronics Experiments by Maheshwari, L.K. Anand, M.M.S., New Age International (P) Ltd.
- Electricity-Electronics Fundamentals: A Text-lab Manual by Paul B. Zbar, Joseph Sloop, & Joseph G. Sloop, McGraw-Hill Education
- 3. Laboratory Manual Basic Electrical Engineering by Umesh Agarwal, Notion Press
 - Basic Electrical and Electronics Engineering by S.K. Bhattacharya, Pearson Publishers.
- Web sources suggested by the teacher concerned.